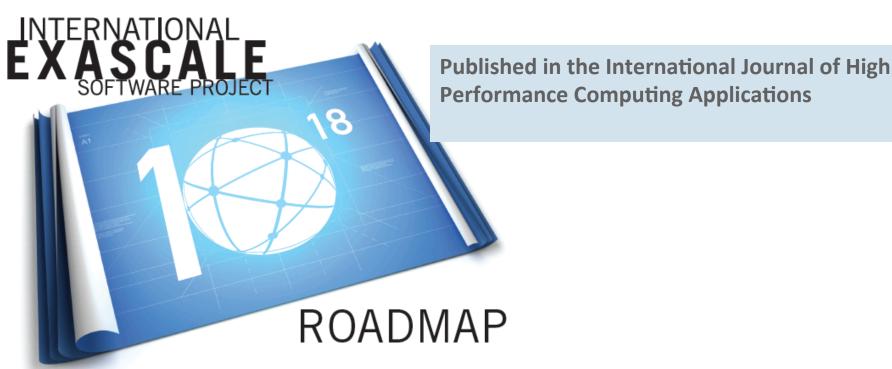


New Directions for Extreme-Scale System Software


Pete Beckman

Director, Exascale Technology and Computing Institute (ETCi)
Argonne National Laboratory

Co-Director, Northwestern-Argonne Institute for Science and Engineering Senior Fellow, Computation Institute, University of Chicago

Jack Dongarra
Pete Beckman
Terry Moore
Jean-Claude Andre
Jean-Yves Berthou
Taisuke Boku
Franck Cappello
Barbara Chapman
Xuebin Chi

Alok Choudhary Sudip Dosanjh Al Geist Bill Gropp Robert Harrison Mark Hereld Michael Heroux Adolfy Hoisie Koh Hotta Yutaka Ishikawa Fred Johnson Sanjay Kale Richard Kenway Bill Kramer Jesus Labarta Bob Lucas Barney Maccabe

Satoshi Matsuoka

Paul Messina Bernd Mohr Matthias Mueller Wolfgang Nagel Hiroshi Nakashima Michael E. Papka Dan Reed Mitsuhisa Sato Ed Seidel

Build an international plan for coordinating research for the next generation <u>open source software</u> for scientific high-performance computing

SPONSORS

EU Announced Funding...

EU to double supercomputing funding to €1.2bn

By Jack Clark, ZDNet UK, 16 February, 2012 16:11

Daily Newsletters

Sign up to ZDNet UK's daily newsletter.

Topics

HPC, Supercomputing, Neelie Kroes, European Commission, High-performance computing, Exascale, Exaflop, Petaflop, Curie, Top500, Investment, Funding, PRACE

Sponsored Links

SPSS Business Analytics

Get IBM SPSS Analytic Case Study. See How Top Companies Use SPSS.

www.ibm.com

Foreigner in Japan?

Are Japanese Banks
Increasing Your Wealth?
Put Your YEN to Work!
www.ObjectiveTrading.co

NEWS Supercomputing in Europe is set to get a boost after the European Commission announced plans to double its funding of high-performance computing.

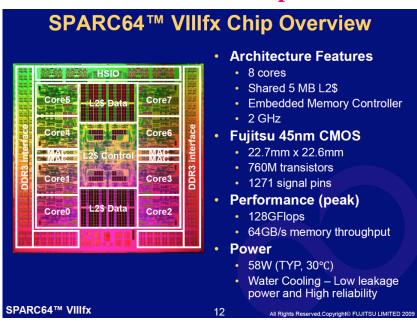
Annual investment in supercomputing equipment, training and research will go from €630m (£522m) to €1.2bn to help Europe "reverse its relative decline in HPC use and capabilities", the Commission said in a statement on Wednesday.

The EU has doubled its funding for supercomputing projects to €1.2bn. Pictured: the MareNostrum computer at the Barcelona Supercomputing Center. Image credit: Barcelona Supercomputing Center

Three Exascale Platform Projects Started in Oct-2011 to Explore European Prototype Architectures

- Goal: jumpstart exascale platforms for Europe
- Joint funding: EC + (some) member states
- Immediate investment modest; \$63M total across 3 years (\$21M/year)
 - Mont-Blanc Project (14.5M€ total)
 - European: ARM (UK), STMicro (France/Italy), BULL (France)
 - + research teams from labs / universities
 - DEEP Project (18.5M€ total)
 - EU / US: EXTOLL(German), Intel (US)
 - + research teams from labs / universities
 - CRESTA Project (12M€ total)
 - Vampir (German), Cray (UK), Allinea (UK)
 - + research teams from labs / universities

- EESI Plan requests significant, sustained investments in 2 or 3 tracks for 2012
 - 500M€ 1000M€ over 10 years



Kobe Japan: Advanced Instituted for Computational Science

Japan: Current #1: The "K" Computer

The heart of the K computer consists of 80,000 Fujitsu's SPARC64 VIIIfx CPUs

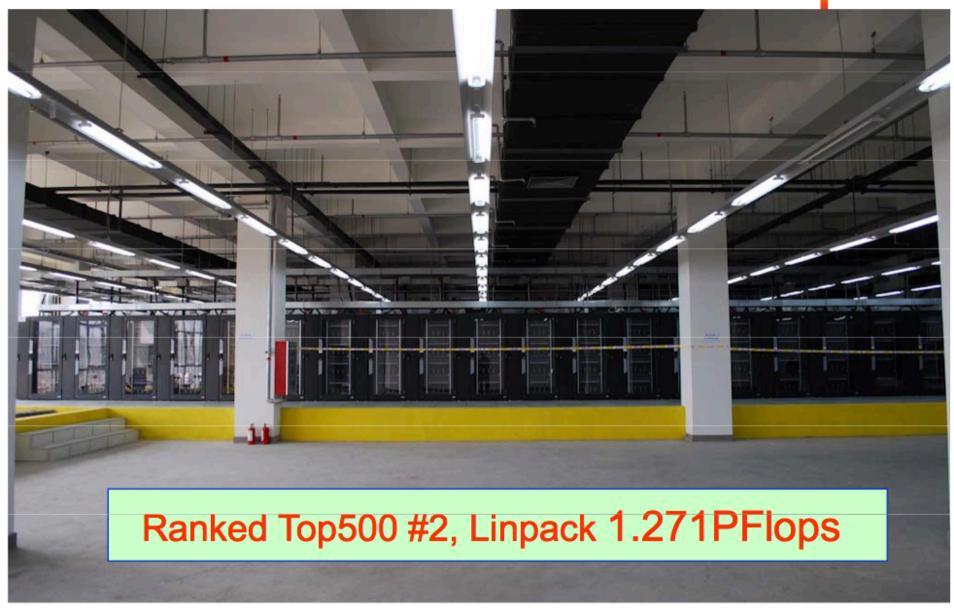
864 Cabinets 10PFlops 1PB

24 Boards / Cabinet

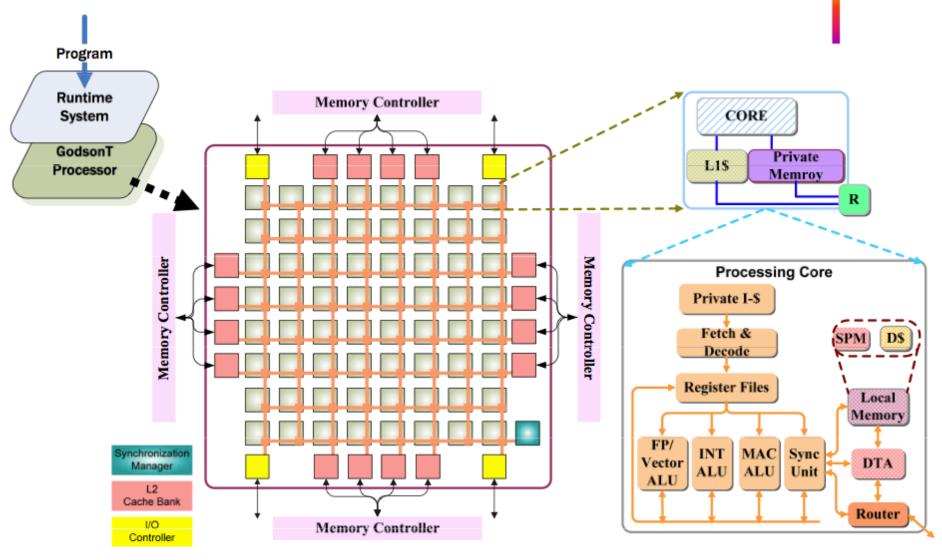
Fujits<u>u SPARC</u>64[™]IXfx

Sept 2011: New chip announced

An amazing accomplishment, with unique and advanced system software



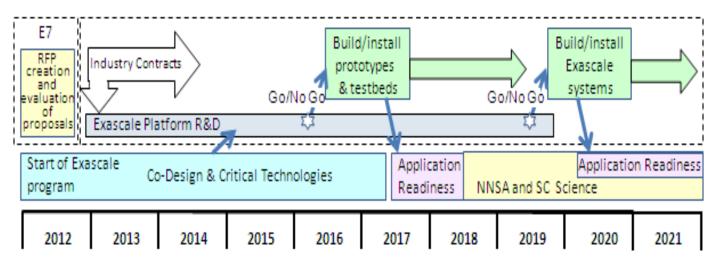
Pete Beckman Argonne National Laboratory


Dawning Nebulae: 3PFlops (2010)

Architecture Overview of Godson-T

New at Argonne: BLUE GENE/Q

- Mira Blue Gene/Q System
 - 48 racks
 - 48K 1.6 GHz nodes
 - 768K cores & 786TB RAM
 - 384 I/O nodes
 - Peak: 10PF
- Storage
 - ~35 PB capacity, 240GB/s bandwidth (GPFS)
 - Disk storage upgrade planned in 2015
 - Double capacity and bandwidth
- New Visualization Systems
 - Initial system in 2012
 - Advanced visualization system in 2014
 - State-of-the-art server cluster with latest GPU accelerators
 - Provisioned with the best available parallel analysis and visualization software



BG/Q installed and running! A GREEN Solution: Co-Designed with IBM

USA: Exascale RFI: Deep NDAs with Companies to Explore Computing Technology for 2020

Table 1. Exascale System Goals

Table 1. Exascale System Goals			
Exascale System	Goal		
Delivery Date	2019		
Performance	1000 PF LINPACK and 300 PF on to-		
	be-specified applications		
Power Consumption*	20 MW		
MTBAI**	6 days		
Memory including NVRAM	128 PB		
Node Memory Bandwidth	4 TB/s		
Node Interconnect Bandwidth	400 GB/s		

^{*}Power consumption includes only power to the compute system, not associated storage or cooling systems.

PF = petaflop/s, MW = megawatts, PB = petabytes, TB/s = terabytes per second, GB/s = gigabytes per second, NVRAM = non-volatile memory.

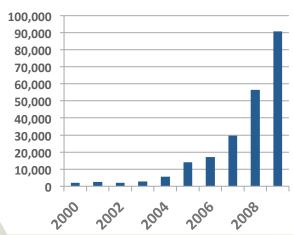
^{**}The mean time to application failure requiring any user or administrator action must be greater than 24 hours, and the asymptotic target is improvement to 6 days over time. The system overhead to handle automatic fault recovery must not reduce application efficiency by more than half.

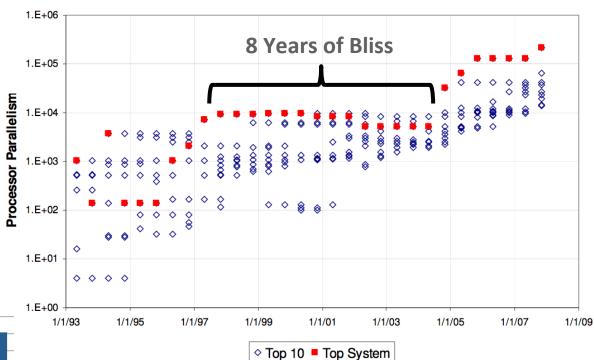
What Did We Learn? Maybe the Obvious... CPUs are Changing...

- Parallelism within a node is dramatically increasing
 - System software will change
- Dynamic power management is critical to performance
 - System software will change
- Distributed memory: cache coherence not power efficient
 - System software will change
- Deep memory hierarchies: 3D local RAM and NVRAM
 - System software will change
- Faults may increase
 - System software will change

Phones lead, desktops follow?

Parallelism


Parallelism Has Suddenly Exploded "The core is the new transistor" (new Moore's law)



Raspberry Pi: \$25

700MHz ARM11

\$25

Source: DARPA Exascale Report

With Intranode Parallelism Exploding, How Do We Write Programs?

In-Socket Parallel Programming is a Mess:

```
#pragma omp parallel for
  default(shared) private(i) \
    schedule(static,chunk) \
    reduction(+:result)

for (i=0; i < n; i++)
    result = result + (a[i] * b[i]);

printf("Final result= %f\n",result);</pre>
```

float function FTNReductionOMP(data, size)
float data(*)
integer size
ret = 0.0
!dir\$ omp offload target() in(size) in(data:length(size))
!\$omp parallel do reduction(+:ret)
do i=1,size
ret = ret + data(i)
enddo
!\$omp end parallel do
FTNReductionOMP = ret

	Directive					
Clause	PARALLEL	DO/for	SECTIONS	SINGLE	PARALLEL DO/for	PARALLEL SECTIONS
IF	•				•	•
PRIVATE	•	•	•	•	•	•
SHARED	•	•			•	•
DEFAULT	•				•	•
FIRSTPRIVATE	•	•	•	•	•	•
LASTPRIVATE		•	•		•	•
REDUCTION	•	•	•		•	•
COPYIN	•				•	•
COPYPRIVATE				•		
SCHEDULE		•			•	
ORDERED		•			•	
NOWAIT		•	•	•		

System Software Challenges:

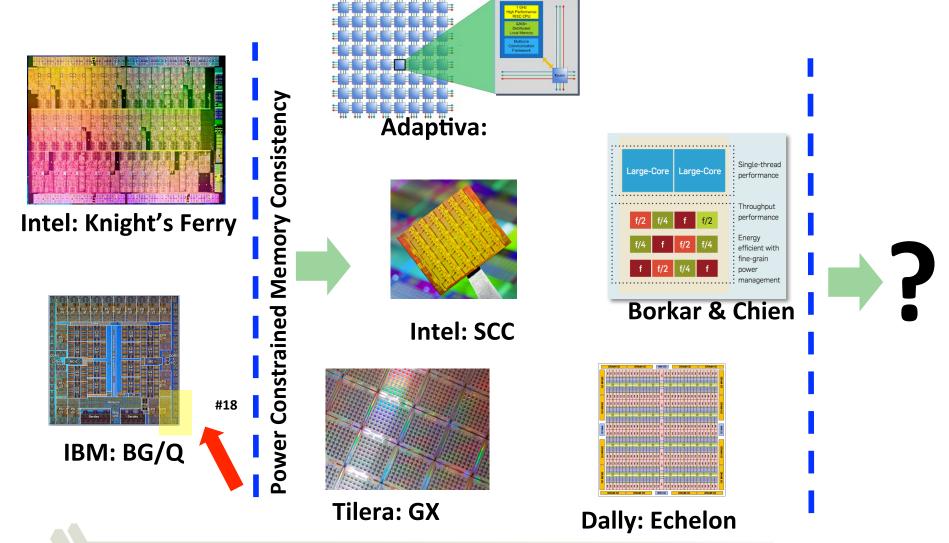
- We do not yet have a good in-socket parallel programming model
- New Programming Models & Languages
 Needed (OpenMP is a mess)
- Memory mgmt for deeper hierarchies (3D scratchpad, cache, memory)
- OS that controls threads, tasks, and power
- How do we represent heterogeneous HW?

Rethinking the parallel abstract machine....

Reinventing Programming Models?

- In this new world, we must reinvent our abstract machine
 - Programmers have focused on "cores", dividing work across cores
- We can't program to an exponentially changing component... (num cores
 - Only trees handle exponentially growing resources...
- We must return to higher-level models
 - Coherence domains, sea of ALUs
- Programming model cannot be based on parallelism after the fact (openMP)
 - Charm++, CILK? Concurrent Collections? Functional Programming?
- System Software Challenge:
 - Explore new abstract machine and programming languages, and run-time systems

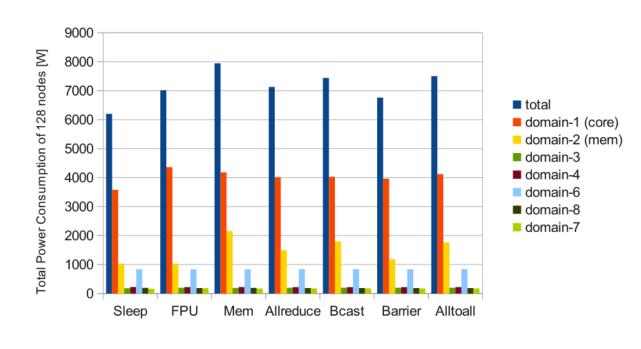
parallelism

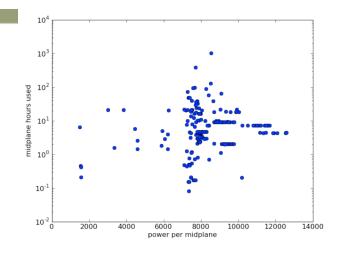

Courtesy Jack Dongarra:

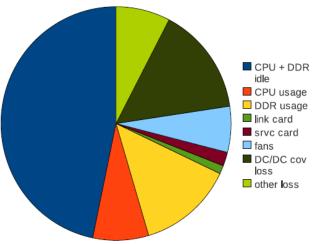
Intranode Power Constraints and Cache Coherence

Within the Node, What Else is Changing?

How Will System Software Manage CPUs? How Will They Be Programmed?

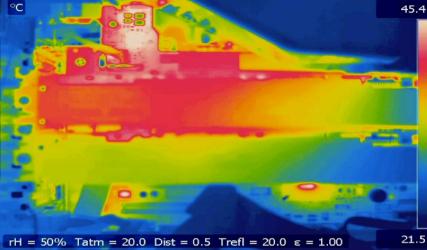

Power, Parallelism, Coherence, Fault, Storage


System Software Challenges:

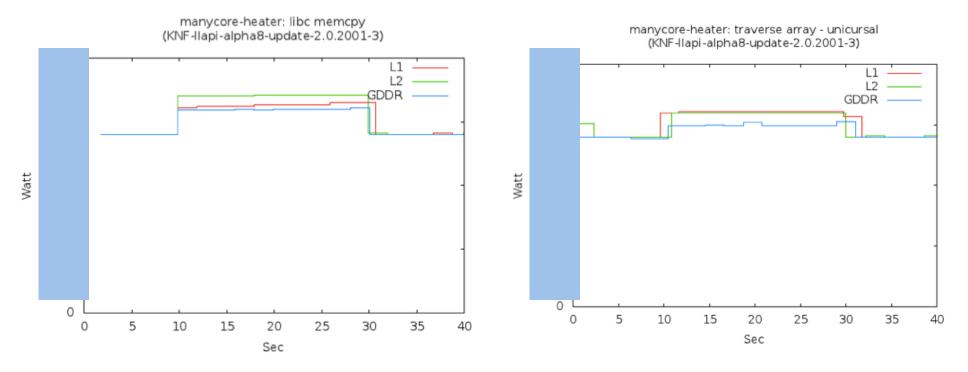

- Power must be a managed resource
 - Dark Silicon: More functional units than can run at full speed
 - Variable speed subcomponents
 - New: Optimize perf for Thermal Design Point (TDP)
- Restructured node architecture
 - Massive levels of in-package parallelism
 - Variable coherence domains and intrasocket messaging
 - Heterogeneous multi-core (graphics, compression, etc)
 - Programming model for this?
- Complex fault behavior
 - Single core could experience fault
 - Need for fault domains

BG/P & BG/Q Power Experiments

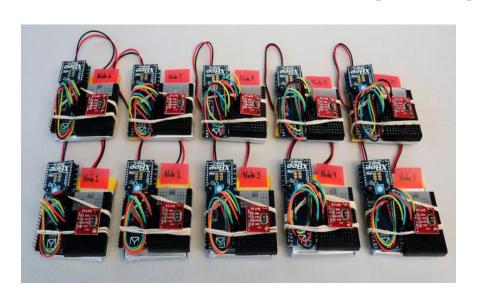
Comparison between CNK and Linux on sleep()

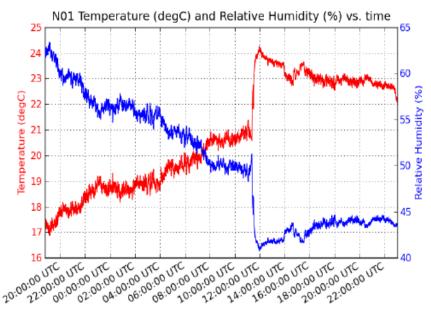

	CNK	Linux	%
KWatt	14.935	13.809	7.75

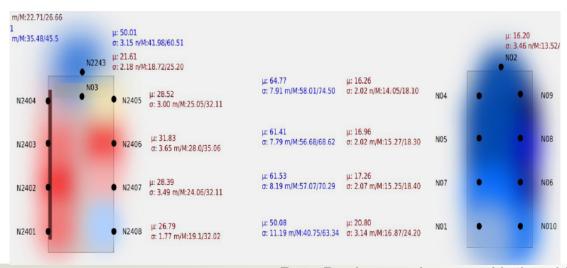
Exploring Power on Intel Knights Ferry



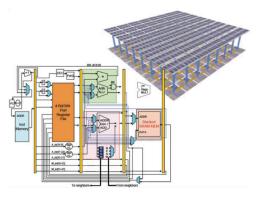
- •Intel SS5520SC mother board
- •Two D0 stepping KNF cards
- •Cento OS 6.0
- •alpha8-update

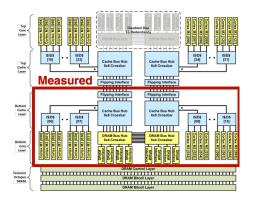

Seeking to Isolate Components



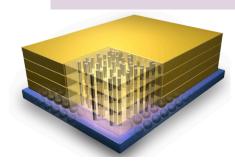

- Future manycore chips will permit many power modes and speeds per core
- System software needed to manage power
- Goal:
 - Create abstract machine model for power use (compiler, runtime, etc)
 - Create dynamic power-aware run-time system

Data Center Monitoring using Wireless Sensors

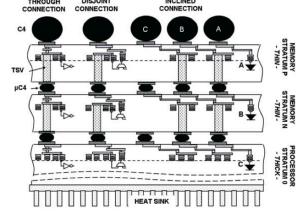



Near Future Technologies

3D Chip Stacking: Really Fast, Really Close, Really Small

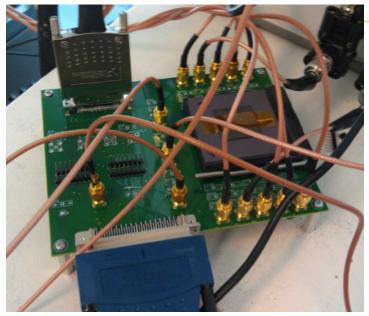


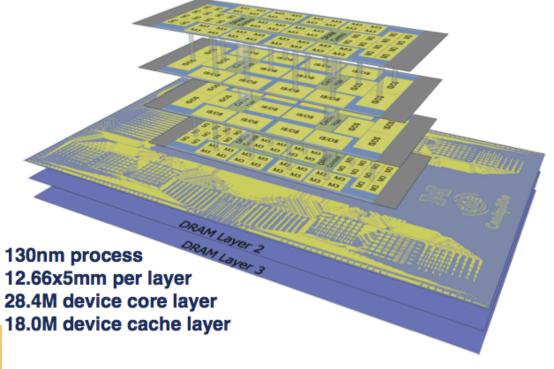
Georgia Tech

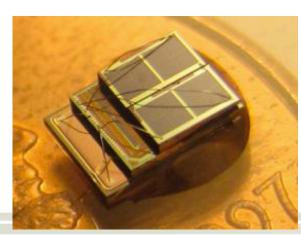


Univ of Michigan

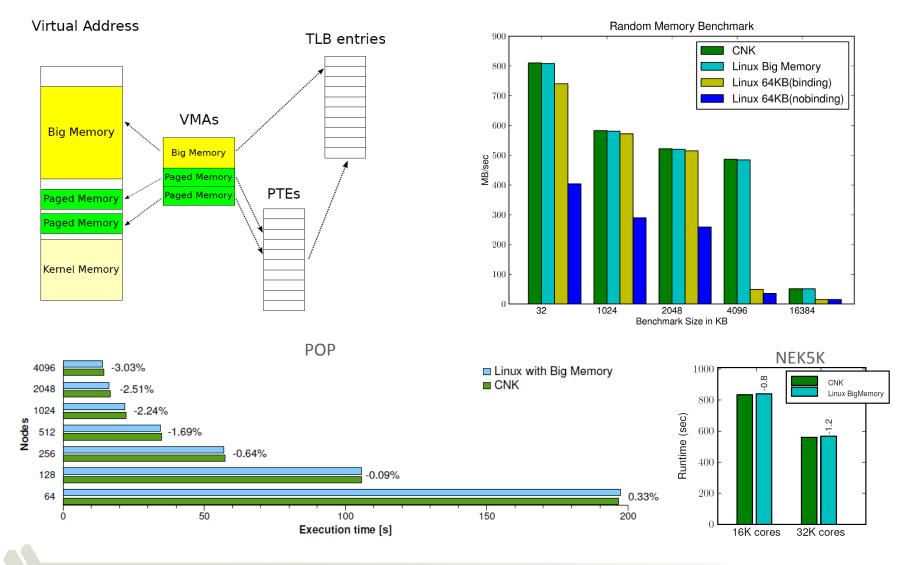
- On-chip RAM getting smaller WRT parallelism
- Bandwidth will be excellent
- Advanced memory operations possible
- Integrated NIC is the next step
- Explicit data movement within chip
- System Software Challenges
 - Memory management, data movement
 - OS that controls threads, tasks, and power


Micron HMC


"Early benchmarks show a memory cube blasting data 12 times faster than DDR3-1333 SDRAM while using only about 10 percent of the power."



University of Michigan



Centip3De System Overview

ZeptoOS Project: Lightweight OS & Run-time

Exciting Times

- Parallelism within a node is dramatically increasing
 - System software will change
- Dynamic power management is critical to performance
 - System software will change
- Distributed memory: cache coherence not power efficient
 - System software will change
- Deep memory hierarchies: 3D local RAM and NVRAM
 - System software will change
- Faults may increase
 - System software will change

Phones lead, desktops follow?

What Does This Mean for Computer Science? (and System Software)

- Parallelism: Sequential code is obsolete. Crazy amounts of parallelism
 - SIMD, Vector, MIMD, etc
 - We must revisit programming models, languages, invent new ways to express parallelism
 - Advanced run-time systems to manage tasks and dependencies
- Dynamic power management: first class object in system software
 - Performance is limited by Thermal Design Point (TDP)
 - New algorithms to improve performance within TDP... New analysis techniques
 - · Power (speed) and dark silicon must be explicitly managed by system software
- Distributed memory: intranode programming must access remote data
 - Combined with parallelism, programming model will manage data movement
- Deep memory hierarchies: 3D RAM, NVRAM on node
 - I/O Forwarding inside the node
 - New models for deep memory hierarchy
- Faults: Distributed computing arrives within the node
- Variable precision floating point: new numerical analysis and library designs
 - Quantify precision and uncertainty
 - Library interfaces to specify precision
 - Hybrid algorithms based on precision, speed, power

